AUDIO Audio Engineering Society

‘% Convention Paper 9848

® Presented at the 143" Convention
2017 October 18-21, New York, NY, USA

This convention paper was selected based on a submitted abstract and 750-word precis that have been peer reviewed by at
least two qualified anonymous reviewers. The complete manuscript was not peer reviewed. This convention paper has been
reproduced from the author’s advance manuscript without editing, corrections, or consideration by the Review Board. The
AES takes no responsibility for the contents. This paper is available in the AES E-Library (http://www.aes.org/e-1ib), all rights
reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the Journal of the
Audio Engineering Society.

Analysis and prediction of the audio feature space when
mixing raw recordings into individual stems

Marco A. Martinez Ramirez! and Joshua D. Reiss!

I Centre for Digital Music, Queen Mary University of London, Mile End Road, London EI 4NS, United Kingdom

Correspondence should be addressed to Marco A. Martinez Ramirez (m.a.martinezramirez@gmul.ac.uk)

ABSTRACT

Processing individual stems from raw recordings is one of the first steps of multitrack audio mixing. In this work,
we explore which set of low-level audio features are sufficient to design a prediction model for this transformation.
We extract a large set of audio features from bass, guitar, vocal and keys raw recordings and stems. We show that a
procedure based on random forests classifiers can lead us to reduce significantly the number of features and we use
the selected audio features to train various multi-output regression models. Thus, we investigate stem processing
as a content-based transformation, where the inherent content of raw recordings leads us to predict the change of
feature values that occurred within the transformation.

1 Introduction achieved through a set of linear and nonlinear effects,

which can be classified into five different classes: gain,

Audio mixing is a crucial part of music production. It
essentially tries to solve the problem of unmasking by
manipulating the dynamics, spatialisation, timbre or
pitch of multitrack recordings [1]. In this paper, we
define a stem as a processed individual instrument track,
and a raw track as an unprocessed recording. This
differs from subgrouping practices where submixes
are created from groups of instruments with similar
characteristics [2, 3].

Stem processing is an early stage of audio mixing,
whose main objective is to combine the raw recordings
in order to obtain a better representation of the musical
source. For example, an electric guitar recorded via
different microphone positions plus the direct input is
processed into one stereo stem. This manipulation is

delay lines, panning, equalisation (EQ) and dynamic
range compression (DRC) [4].

This process is instrument and genre specific since
a bass rock stem is obtained by applying a different
configuration of effects than a bass guitar jazz stem.
For a specific instrument source this process can be
described by (1).

M

s[n] = Z Hm,c[n] * rm[n] (1)

m=1

Where s is the individual processed stem, M is the total
number of raw recordings r, H is the chain of audio
effects and c their respective control values.
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Fig. 1: Block diagram of a content-based transforma-
tion.

Content-based transformations are described in [5] as
the change a particular sound experiences when ad-
dressing any type of information related to the audio
source, i.e. audio is analysed, meaningful features are
extracted and the control signals act to transform the
sound and consequently to modify the features. This
is similar to how perceptual and high-level features
lead the sound engineer through this process. Since the
input from the sound engineer is a change of the audio
effects’ control values, this interaction acts as a high-
level transformation that is processed and assigned to
the low-level features [5] (see Fig. 1).

Thus, stem audio mixing can be modelled as a pre-
processing content-based stage where mostly technical
criteria is involved, since most of the artistic or creative
considerations will take place when blending the stems
into the final mix. Therefore, we investigate stem pro-
cessing as a content-based transformation, where the
inherent content of the raw and stem tracks can lead us
to obtain and predict the affected low-level features.

Our task is to reveal which set of spectral, temporal,
harmonic or perceptual low-level features are altered
by the transformation in the most consistent way. We
explore whether this set of features can be used to
design a prediction model. Thus, within a stem audio
mixing task, we investigate a system that analyses the
raw recordings and predicts the values of the relevant
audio features. Accordingly, the new audio feature
values are placed within the stem audio feature space
and act as an indicator of the expected values for the
initial raw recordings.

We show that a procedure based on random forests
classifiers can lead us to reduce significantly the num-
ber of features. We use the selected audio features to
train various multi-output regression models. In order

Table 1: Most common extracted features

Feature Feature Name Frame/Hop | Reference
Type size (sam-
ples)
log-attack time lobal [7]
Temporal | (220 2048/1024 [9]
spectral centroid . [7]
Spectral Barkbands 1\24 .
spectral contrast coef- [10]
ficients O\S
Harmonic odd-to-even ratio . [7]
hpep 0\35 4096/2048 [11]
Perceptual spec%ﬁc sharpness 2048/1024 [7]
specific spread . .

to improve the performance, we analyse which set of
features are correctly predicted by the models and we
explore whether an ensemble of models can provide
better predictions.

The rest of the paper is organised as follows. In Section
2 we summarise the relevant literature related to audio
feature extraction and feature selection. We formulate
our problem in Section 3 and in Section 4 we present
the methods. Sections 5, 6 and 7 present the obtained
results, their analysis and conclusion respectively.

2 Background

2.1 Audio features

Extracting audio features is common practice in a va-
riety of fields, such as automatic speech recognition,
music information retrieval or audio event recognition.
[6] provides a survey of state-of-the-art features in var-
ious domains such as temporal, spectral, perceptual,
and rhythmic. In a similar way, [7] summarizes a large
set of audio features in global and frame-based audio
descriptors.

Global features are calculated over the complete audio
signal and frame-based or instantaneous features are
extracted from overlapping short time windows. The
features are retrieved directly from the audio signal or
after a respective spectral, harmonic or perceptual trans-
formation. Finally, pooling is performed by modelling
the features over time using statistics such as mean,
standard deviation, etc. [7, 8].

Some of the most common extracted features can be
seen in Table 1.

AES 143 Convention, New York, NY, USA, 2017 October 18-21
Page 2 of 10



Martinez Ramirez, and Reiss

Audio feature space prediction when mixing individual stems

2.1.1 Audio features and music production

In recent years audio features have been analysed to
gain a better understanding of the mixing process or
to perform different tasks within an automatic mix-
ing framework. In [12] a wide range of features is
extracted from a set of mixing sessions in order to
perform an analysis of variance among instruments,
songs and sound engineers. [13] explores feature ex-
traction from a set of mixes and it is proposed that
higher-quality mixes are located in certain areas of the
feature space.

[14] describes sound quality as the lossy compression
that the user performs on an audio file. Sound qual-
ity classification is achieved by using a selected set of
audio features and machine learning classifiers such
as SVM and KNN. Feature selection for automatic
subgrouping of multitrack audio is performed in [15],
where 74 features are selected from a set of 159. Ran-
dom forests classifiers are used for variable importance
and agglomerative clustering for automatic subgroup-

ing.

In [16], stem audio mixes were analysed and sets of
spectral, dynamic and harmonic audio features were
proposed as the main features within a raw and stem
classification task. This is done for different families
of instruments such as the bass, guitar, vocals and keys.
Furthermore, it was shown that machine learning clas-
sifiers improved their performance when using the re-
duced set of features.

2.2 Random forests and feature selection

Random forests classifiers consist of several decision
trees that are being constructed and trained using boot-
strap aggregation from samples and features of the
training data. Bootstrap aggregating, or bagging, is
a subsampling technique where multiple subsets are
drawn at random, but with replacement, from the learn-
ing set and consequently used as new learning sets [17].
Therefore, the kth decision tree (#;) is trained with a
random subset of samples (/) and each node is split
with a random subset of features (f;). In this manner, a
random forest classifier consists of a collection of deci-
sion trees classifiers {c/f(x,0;),k = 1,...} where @
are independent identically distributed (i.i.d) random
vectors containing the subsets /; and f;. For the input
X, the selected class is the mode class among the k tree
outputs [18].

Performance is normally measured using the out-of-
bag (OOB) indicator, which is the average error for
each trained tree. It is calculated when #;, predicts the
output of a sample that was not included in /.

Random Forests are also used as indicators of vari-
able importance and two methods are mainly used; the
Gini and the permutation importance procedures. The
permutation importance method, see (2), measures the
average decrease of the accuracy on all OOB indicators,
when a value of f; is permuted randomly [19].

(OOB, — 00B!) )

==
ygle

VI(F,) =

t=1

VI(F),) is the variable importance of the feature F),
and OOB; and OOB? are the initial and permuted out-
of-bag errors respectively. This method is a more ac-
curate indicator for variable importance and it can be
improved when bagging is performed without replace-
ment [20].

3 Problem Formulation

For a specific instrument source, consider M raw
recordings r and one processed stem s, for which we
extract and pool a set of audio features F” and F* re-
spectively. We use a procedure based on random forests
classifiers (rfc) and the permutation method (VI) to
reduce the number of audio features.

We attempt to find the set of features (f,cq) in order to
build a prediction model of the transformation.

rfc{rvs}7V1{Fr7Fs}:>fpr€d (3)

Thus, given the input vector of raw prediction features
values r{ fyrea} = f1, f5,---. f, and the target vector of
stem prediction features values s{ fprea} = f1,f5, - firs
where 1 is the number or prediction features | f,.q|. We
train different regression models to learn the following
function.

Y() 2 r{fpreat = {fprea} “4)

Finally, using regression metrics, we explore which
subset of features and which combination of models
lead to the best predictions.

AES 143 Convention, New York, NY, USA, 2017 October 18-21
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4 Methods

4.1 Dataset

The raw recordings and individual processed stems
were taken from [21], mostly based on [22] and follow-
ing the same structure; a song consists of the mix, stems
and raw audio. 102 multitracks were selected which
correspond to genres of commercial western music
such as Rock, Folk, Jazz, Pop, Fusion and Rap. These
have been mixed by experienced sound engineers and
recorded in professional studios.

All tracks have a sampling frequency of 44.1 kHz, and
we proceeded to find the 10 seconds with the highest
energy for each stem track. Our assumption is that the
most relevant raw recording is the one with the highest
energy. Thus, the corresponding raw tracks were anal-
ysed during the same 10 second interval and the one
with the highest energy was chosen. The selected tracks
were downmixed to mono, loudness normalisation was
performed using replayGain and an equal-loudness fil-
ter [23]. The test dataset corresponded to 10% of the
raw and stem tracks. Table 2 shows the dataset.

Table 2: Raw and stem number of tracks by instrument

group.
Group || Instrument Source Raw Stem
bass electric bass 96 62
synth bass 12 6
clean electric guitar 112 36
. acoustic guitar 55 24
guitar distorted electric guitar 78 20
banjo 2 2
male singer 145 36
vocal female singer 61 22
male rapper 12 2
piano 113 38
Keys synth lead 51 17
tack piano 27 7
electric piano 3 3

4.2 Feature Extraction

Based on the evaluation of audio feature extraction
libraries presented in [24], the spectral, temporal, har-
monic and perceptual low-level features were extracted
using [25]. In total, 78 different features were ex-
tracted, of which 15 are global and 63 are frame-based
descriptors. Most of the frame-based features were
computed with frame/hop sizes equal to 2048/1024

samples, although there were some exceptions with
sizes of 4096/2048 and 88200/44100 samples.

Pooling was performed over the frame-based features
and the following statistics were calculated: mean, me-
dian, variance, standard deviation, minimum, maxi-
mum, kurtosis, skewness and mean and variance of
the first and second derivatives. Thus, from each stem
and raw segment, a total of |F| = 1812 features were
extracted.

4.3 Feature Selection

In order to perform the selection of features, we fol-
lowed the same procedure as [16], which is based on
[19]. The following steps allowed us to obtain the
prediction features fpq.

4.3.1 Prediction features

e A total of 50 random forests classifiers with k =
2000 and |fi| = |F|/3 were built.

e The mean of the feature importances along with
their corresponding standard deviations were
sorted in descending order. Feature importance
was calculated with (2).

e The threshold of importance was estimated by fit-
ting the standard deviation values with a decision
tree regressor and retaining only the features with
importance value above this threshold. These are
the first preselected features f,;.

e A nested set of random forest classifiers were con-
structed using the preselected features. This was
done starting from the most important feature and
one feature was added for each classifier that was
built. All classifiers were fitted 50 times and two
labels were used in the classification task: raw
and stem. We selected the features that led to the
minimum mean OOB error. These are the second
preselected features f.

e Using f,» an ascending sequence of random
forests classifiers is built following the same prin-
ciples as the nested set. The difference is that a
feature is only added if the decrease of the OOB
error is significant. This threshold is defined by
(5). It is the mean of the absolute value of the
first derivative of the OOB errors, correspond-
ing to the models trained with the set of features

(fpl mfp2)c~
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e Each random forest classifier is fitted 50 times,
and the features of the last model correspond to
the prediction features feq.

1 ‘prlfl
z:|0030+4)—0030n

THypeg = ————
P |f[’1‘_|fﬂ2|j:‘fpz‘
(5

4.4 Feature regression models

We performed a 5-fold cross-validation to optimise the
hyperparameters of different multi-output regression
models. Hyperparameters are the parameters whose
values are set before the training process. The trained
models are: support vector regressor (SVR), random
forest regressor (RF), k-nearest neighbour (KNN), par-
tial least squares (PLS) and linear regression (LR). This
was done for each instrument group and its f,.q set.
The optimal hyperparameters are presented in Table 3.
Each KNN regressor was trained using the minkowski
distance as metric.

The models were evaluated with the mean average
percentage error (mape) and the mean absolute error
(mae).

mape Z |yl€S1 (6)
=0 Ytecz
1N .
mae(f) = N Z |y;‘est 7yl| (7)
i=0

Where y and y,.; are the predicted and real stem values
of a specific feature f € f,eq. N is the number of stem
segments in the test dataset.

An entry was considered an outlier if its value was
greater than 3 times the standard deviation after sub-
tracting the mean. These were removed from the train-
ing dataset.

Table 3: Hyperparameters of the multi-output regres-
sion models.

SVR RF | KNN | PLS
Group
kernel C gamma | epsilon| trees | n compo-
(k) nents
bass | rbf 1 8 0.002 | 1000 | 6 1
guitar | rbf 1024 | 3.12e-2 | 0.149 | 750 | 19 1
vocal | sigmoid | 64 le-4 0.73 1000 | 13 1
keys | sigmoid | 32768 | 1.25¢-4 | 9.299 | 2000 | 5 4
5 Results

The feature selection procedure was applied to the bass,
guitar, vocal and keys instrument groups.

First, Fig. 2 shows the mean of importance in descend-
ing order for the first 50 features. Then, based on the
standard deviation of the importances, the threshold
estimation led to the first preselected features (f,1) and
from the nested set of random forests classifiers f,»
was established. Finally, f,..s was obtained by con-
structing an ascending set of random forest classifiers
whose OOB error is shown in Fig. 3.

The number of obtained features and the list of pre-
diction features is presented in Table 4 and Table 5
respectively.

The multi-output regression models were trained with
the raw and stem fp.q vectors as input and target re-
spectively. The performance of the models can be seen
in Table 6.

The features that led to the best performance were used
to re-train the models. Using these features we ob-
tained the best possible ensemble of regression models.
Accordingly, the average mape (a-mape) between the
selected features was used as a metric. This was done
for each group of instruments and the results can be
seen in Table 7.

In order to have a visual cue from the latter set of
features, we used PCA to fit the raw and stem feature
vectors into a two-dimensional space. This can be seen
in Fig. 4.

AES 143 Convention, New York, NY, USA, 2017 October 18-21
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Fig. 2: Mean of importance for the first 50 features for
bass, guitar, vocal and keys.

Table 4: Number of preselected and prediction fea-

tures.
Group |fp1 ‘ ‘f[ﬂl |fpred|
bass 7 6 4
guitar 28 7 6
vocal 14 7 4
keys 24 14 4

6 Analysis

6.1 Feature selection

Fig. 2 shows that from 1812 features no more than 30
have a significant mean of importance. f,1 is larger
for keys and guitar (> 20) than for bass and vocal
(< 15). When selecting f, the feature set size is further
reduced, having 14 features for keys and less than 7
features for bass, guitar and vocal. The size of fp.q
was fairly uniform between the groups, with 4 features
for bass, vocal and keys and 6 features for guitar.

From Fig. 3, it can be seen that the order of f,..q is
based on features that reduce the most the OOB error.
Table 5 shows that the selected features correspond
to different types of dynamic, spectral and harmonic
audio characteristics.

el - bass
............ guitar
0.50 =
. keys
0.45 A
§0,40 »
[}
m
So.3s5
0.30 R
»\--‘»-,
0.25
0.20
0 1 2 ; ' 5

number of features

Fig. 3: OOB error and number of features for the as-
cending set of random forest classifiers.

6.2 Features for the prediction of the
transformation

From Table 6 it is evident that the performance of the
models was satisfactory for certain features. Mape
values of less than 10% were observed for features
belonging to the bass, guitar, and vocal groups. On the
other hand, 8 features across all instruments’ groups
presented deficient results, with mape values greater
than 50% and in some cases extremely large values.
Also, the mae helps to understand the relative mape
in terms of the units of measurement of the respective
features.

In general, when considering the individual features,
LR provided the best results. SVR, KNN and PLS
performed consistently as well as RF. The latter was
more robust to the features in which the other models
failed, but still achieved poor results (mape > 80%).

The multi-output regression models were optimised by
removing the features the models failed to provide a
good estimate for. Table 7 shows that a greater num-
ber of characteristics remained for the vocal and bass
groups. The best results were obtained from an ensem-
ble composed of SVR and LR. Both bass and vocal,
achieved a-mape values around 12%. Within the gui-
tar and keys groups, the models predicted a smaller

AES 143 Convention, New York, NY, USA, 2017 October 18-21
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PCA visualisation for (a) bass, (b) guitar, (c)
vocal and (d) keys. Raw and stem segments are
red and blue respectively. Axes are unitless.

Table 5: List of prediction features.

Group || Name Pooling
1 - spectral contrast valley (0) | max
bass 2 - effective duration global
3 - hpep (33) variance second derivative
4 - spectral energy low mean
1-rms variance first derivative
) 2 - spectral energy middle-low | variance second derivative
guitar || 3 _joudness stevens variance second derivative

4 - spectral energy middle-low | mean first derivative
5 - spectral contrast valley (0) | max

6 - loudness stevens mean second derivative

1-larm variance first derivative
vocal || 5 spectral contrast coeff. (1) | standard deviation

3 - pitch salience mean first derivative

4 - pitch salience mean second derivative

1 - spectral energy middle-low | variance

keys 2 - spectral energy max
3 - loudness vickers max
4 - barkbands (4) max

number of features correctly. SVR and RF provided
a-mape values around 20%, which is still considered
acceptable.

This is also confirmed by Fig. 4. It is easier to dif-
ferentiate between the raw and stem segments for the
vocal and bass groups, while guitar and keys are more
difficult to separate.

The optimal features for the prediction of the transfor-
mation can be classified into the following classes.

6.2.1 Temporal / Dynamic

Dynamic features associated with loudness were
present for the guitar, vocal and keys groups. These are
related to the long-term loudness (larm) [9], loudness
stevens [26] and loudness vickers [27]. For the bass,
effective duration [7] was present, which is a global
temporal indicator associated to the envelope of an au-
dio segment. Since loudness normalisation was applied
prior to the extraction of the features, this transforma-
tion of feature values could be an indicator of the rate of
change of loudness, or the modification of the envelope
due to DRC.

AES 143 Convention, New York, NY, USA, 2017 October 18-21
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Table 6: Evaluation of the multi-output regression models. The bold entries represent the minimum error values.

Group | fored SVR RF KNN LR PLS
mape mae mape mae mape mae mape mae mape mae
1 0.119 | 0.7403 | 0.1084 | 0.6523 | 0.1113 | 0.6763 | 0.1065 | 0.6441 | 0.0991 | 0.5994
bass 2 0.0055 | 0.0532 | 0.0054 | 0.0492 | 0.0071 | 0.0696 | 0.0119 | 0.1168 | 0.0087 | 0.0852
3 0.3659 | 0.0249 | 0.5068 | 0.035 0.4444 | 0.0299 | 0.2652 | 0.0165 | 0.351 0.0222
4 33.746 | 6.6e-4 | 7.6611 | 3.2e-4 | 4.6765 | 2.9e-4 | 11.2052| 2.9e-4 | 11.996 | 3.3e-4
1 6.3777 | 2.1e-5 | 0.8759 | 8.8e-6 | 1.7194 | 8.4e-6 | 1.8354 | 7.6e-6 | 1.7958 | 8.9e-6
guitar | 2 597 3.9e-5 | 2.0051 | 1.4e-6 | 23.82 2.7e-6 | 14.88 2.2e-6 | 27.50 | 3.0e-6
3 2.6341 | 0.1409 | 1.0023 | 0.1480 | 3.0576 | 0.1295 | 3.846 | 0.1319 | 3.4238 | 0.1416
4 16.678 | 2.4e-3 | 0.5617 | 2.3e-3 | 1.6513 | 3.0e-4 | 1.1104 | 2.6e-4 | 1.8755 | 3.4e-4
5 0.1105 | 0.9320 | 0.1172 | 0.9861 | 0.1283 | 1.1126 | 0.098 | 0.8108 | 0.1124 | 0.9305
6 0.3741 | 0.1541 | 0.4448 | 0.2170 | 0.4273 | 0.1625 | 0.5606 | 0.1765 | 0.4978 | 0.1743
1 0.2774 | 2.0896 | 0.3508 | 2.5153 | 0.2721 | 2.0062 | 0.2697 | 1.7983 | 0.2758 | 2.0146
vocal
2 0.1078 | 0.0145 | 0.0783 | 0.0112 | 0.0769 | 0.0111 | 0.0934 | 0.0132 | 0.071 0.0105
3 0.1538 | 0.0111 | 0.1442 | 0.0102 | 0.2003 | 0.0144 | 0.0977 | 0.0069 | 0.1806 | 0.0129
4 0.1579 | 0.0178 | 0.1499 | 0.0171 | 0.2116 | 0.0242 | 0.0991 | 0.0111 | 0.1872 | 0.0213
1 3241 2.5e-5 | 81.91 6.6e-6 | 346.5 | 7.1e-6 | 405.5 7.4e-6 | 315.8 6.8e-6
o 2 10.70 0.0148 | 2.42 0.0088 | 5.16 0.0104 | 3.98 0.0102 | 4.05 0.0095
3 0.1924 | 55232 | 0.1911 | 5.4044 | 0.2195 | 6.2929 | 0.1944 | 5.3863 | 0.2033 | 5.7686
4 22.35 6.8e-3 | 5.47 4.8e-3 | 11.22 5.2e-3 | 4.16 4.5e-3 | 7.851 5.0e-3

Table 7: Average absolute relative error of the multi-
output regression models that performed the
best with the optimal set of prediction fea-

tures.
Group | fpred models a-mape
bass 1-2-3 LR 0.1279
guitar | 5-6 SVR 0.2423
vocal | 1-2-3-4 SVR-LR 0.1263
keys | 3 RF 0.1911

6.2.2 Spectral

The second spectral contrast coefficient and the first
spectral contrast valleys, which are related to the shape
of the spectrum [28], are among the selected features

for the bass, guitar and vocal groups. This could be
an indicator of common practices or a targeted contour
when applying EQ to these types of instruments.

On the other hand, the features that the model failed to
predict are mainly related to spectral energy measure-
ments: middle-low spectral energy (150Hz-800Hz) for
guitar and keys, fotal spectral energy and the fourth
barkband (300Hz) also for the keys and the mean low
spectral energy (20Hz-150Hz) for the bass. These fre-
quency bands are as expected since they contain most
of the energy of the respective instruments [29]. An-
other common factor is that most units of measurement
of these characteristics correspond to values close to
zero (< le —4).

AES 143 Convention, New York, NY, USA, 2017 October 18-21
Page 8 of 10



Martinez Ramirez, and Reiss

Audio feature space prediction when mixing individual stems

6.2.3 Harmonic

For the bass, the 33rd harmonic pitch class profile
(HPCP) was one of the selected features. The HPCP is
calculated from the spectral peaks and represents the
intensities of various subdivisions of semitone pitch
classes [11]. This feature is expected to be related
to the harmonic distortion due to the application of
overdrive audio effects, which are used to enhance
certain harmonics or to reinforce some sounds within
the mix [30]. For the vocal, the harmonic features are
associated to the pitch salience, which is a measure
of the tone sensation linked to the autocorrelation of
the signal [31]. This feature is prone to be related to
the application of pitch shifting correction or de-essing
[30] to the vocal tracks.

7 Conclusion

In this work, we determined the sets of audio features
that can be used to predict stem audio mixing as a
content-based transformation. We extracted a set of
1812 audio features from bass, guitar, vocal and keys
raw recordings and stems. We used a procedure based
on random forest classifiers to find the features that
were altered the most consistently by the transforma-
tion. We trained various multi-output regression mod-
els and based on their performances, we further reduced
the number of features that can be used to predict the
transformation correctly.

The dynamic, spectral and harmonic feature values
of the vocal and bass stem segments were correctly
predicted from the respective raw recording feature
values. The same was achieved for the keys and guitar
dynamic and spectral feature values, although with a
smaller set of features and a larger margin of error.

Since the keys and guitar groups were composed of
a more diverse range of instruments, this might be a
reason for the reduced generalisation by the regression
models. Also because these instruments often have
diverse roles among the different genres. On the other
hand, vocal and bass can be considered to be mixed in a
more consistent and regular way. Therefore, the regres-
sion models learned and predicted the transformation
more accurately.

‘We conclude that the underlying characteristics of ma-
nipulating raw recordings into individual stems can be
described by the mapping of a selected set of audio

features. Thus, we provide a framework to guide auto-
matic mixing systems or sound engineers within stem
mixing tasks.

As a future work, the preprocessing of features that
models failed to predict could improve the performance
of regressors, e.g. a way to meaningfully scale these
feature values. Also, Linear Regression was one of the
models that better performed and this indicates a linear
relationship among the transformation. Nevertheless,
further analysis of the feature values transformation
is required, in addition to how these relate to specific
audio effects. Finally, the method can be improved by
improving the selection of raw recordings, so that more
than one is taken into account during feature extraction.
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